Senin, 21 Januari 2013

( PIPELINING , RISC , DAN PROSESOR PARALEL )

Tugas ke 4 organisasi dan arsitektur komputer
( PIPELINING , RISC , DAN PROSESOR PARALEL )

ARTIKEL KE 1 : PIPELINING & RISC .

1.      PIPELINING .

Pengertian pipelining, pipelining yaitu suatu cara yang digunakan untuk melakukan sejumlah kerja secara bersama tetapi dalam tahap yang berbeda yang dialirkan secara kontinu pada unit pemrosesan. Dengan cara ini, maka unit pemrosesan selalu bekerja.
Teknik pipeline ini dapat diterapkan pada berbagai tingkatan dalam sistemkomputer. Bisa pada level yang tinggi, misalnya program aplikasi, sampai pada tingkat yang rendah, seperti pada instruksi yang dijalankan oleh microprocessor.

Ø  Pengenalan Pipeline.
Prosesor Pipeline yang berputar adalah prosesor baru untuk arsitektur superscalar komputasi. Ini didasarkan pada cara yang mudah dan pipeline yang biasa, struktur yang dapat mendukung beberapa ALU untuk lebih efisien dalam pengiriman dari bagian beberapa instruksi. Daftar nilai arus yang berputar di sekitar pipa, dibuat oleh dependensi data lokal. Selama operasi normal, kontrol sirkuit tidak berada pada jalur yang kritis dan kinerja hanya dibatasi oleh data harga. Operasi mengalir dengan interval waktu sendiri. Ide utama dari Pipeline Prosesor yang berputar adalah circular uni-arah mengalir dari memori register oleh pusat waktu logika dan proses secara parallel dari operasi ALU.

Ø  Keuntungan pipelining .

1.      Waktu siklus prosesor berkurang, sehingga meningkatkan tingkat instruksi dalam kebanyakan kasus( lebih cepat selesai).

2.      Beberapa combinational sirkuit seperti penambah atau pengganda dapat dibuat lebih cepat dengan menambahkan lebih banyak sirkuit. Jika pipelining digunakan sebagai pengganti, hal itu dapat menghemat sirkuit & combinational yang lebih kompleks.

3.      Pemrosesan dapat dilakukan lebih cepat, dikarenakan beberapa proses dilakukan secara bersamaan dalam satu waktu.

Ø  Kerugian pipeline .

1.      Pipelined prosesor menjalankan beberapa instruksi pada satu waktu. Jika ada beberapa cabang yang mengalami penundaan cabang (penundaan memproses data) dan akibatnya proses yang dilakukan cenderung lebih lama.

2.      Instruksi latency di non-pipelined prosesor sedikit lebih rendah daripada dalam pipelined setara. Hal ini disebabkan oleh fakta bahwa intruksi ekstra harus ditambahkan ke jalur data dari prosesor pipeline.

3.      Kinerja prosesor di pipeline jauh lebih sulit untuk meramalkan dan dapat bervariasi lebih luas di antara program yang berbeda.

4.      Karena beberapa instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan yang tepat agar proses tetap berjalan dengan benar.

5.      Sedangkan ketergantungan terhadap data, bisa muncul, misalnya instruksi yang berurutan memerlukan data dari instruksi yang sebelumnya.

6.      Kasus Jump, juga perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya mungkin tidak mengharapkan terjadinya perubahan program counter.

2.     PROSEDUR VEKTOR PIPELINING .

Prosedur Vektor Pepilining, yaitu :
·         Mengambil instruksi dan membuffferkannya
·         Ketika tahapn kedua bebas tahapan pertama mengirimkan instruksi yang dibufferkan tersebut
·         Pada saat tahapan kedua sedang mengeksekusi instruksi, tahapan pertama memanfaatkan siklus memori yang tidak dipakai untuk mengambil dan membuffferkan instruksi berikutnya .
·         Instuksi pipeline:
Karena untuk setiap tahap pengerjaan instruksi, komponen yang bekerja berbeda, maka dimungkinkan untuk mengisi kekosongan kerja di komponen tersebut. Sebagai contoh :
Instruksi 1: ADD  AX, AX
Instruksi 2: ADD EX, CX
Setelah CU menjemput instruksi 1 dari memori (IF), CU akan menerjemahkan instruksi tersebut(ID). Pada menerjemahkan instruksi  1 tersebut, komponen IF tidak bekerja. Adanya teknologi pipeline menyebabkan IF akan menjemput instruksi 2 pada saat ID menerjemahkan instruksi 1. Demikian seterusnya pada saat CU menjalankan instruksi 1 (EX), instruksi 2 diterjemahkan (ID).
Contoh pengerjaan instruksi tanpa pipeline
t =
1
2
3
4
5
6
7
8
9
10
ADD AX,AX
IF
DE
IF
DE
EX
ADD BX,CX
IF
DE
IF
DE
EX
Disini instruksi baru akan dijemput jika instruksi sebelumnya telah selesai dilaksanakan.
t =
1
2
3
4
5
6
7
8
9
10
ADD AX,AX
IF
DE
IF
DE
EX
ADD BX,CX
IF
DE
IF
DE
EX
ADD DX,DX
IF
DE
IF
DE
EX
Contoh pengerjaan instruksi dengan pipeline
Disini instruksi baru akan dipanggil setelah tahap IF menganggur (t2).
Dengan adanya pipeline dua instruksi selesai dilaksanakan pada detik keenam (sedangkan pada kasus tanpa pipeline baru selesai pada detik kesepuluh). Dengan demikian telah terjadi percepatan sebanyak 1,67x dari 10T menjadi hanya 6T. Sedangkan untuk pengerjaan 3 buah instruksi terjadi percepatan sebanyak 2, 14 dari 15T menjadi hanya 7T.
Untuk kasus pipeline sendiri, 2 instruksi dapat dikerjakan dalam 6T(CPI = 3) dan instruksi dapat dikerjakan dalam 7T (CPT = 2,3) dan untuk 4 instruksi dapat dikerjakan dalam  8T (CPI =2). Ini berarti utnuk 100 instruksi akan dapat dikerjakan dalam 104T (CPI = 1,04). Pada kondisi  ideal CPI akan harga 1.
3.     REDUCE INSTRUCTION SET COMPUTER (RISC) .

Sejarah RISC

Reduced Instruction Set Computing (RISC) atau "Komputasi set instruksi yang disederhanakan" pertama kali digagas oleh John Cocke, peneliti dari IBM di Yorktown, New York pada tahun 1974 saat ia membuktikan bahwa sekitar 20% instruksi pada sebuah prosesor ternyata menangani sekitar 80% dari keseluruhan kerjanya. Komputer pertama yang menggunakan konsep RISC ini adalah IBM PC/XT pada era 1980-an. Istilah RISC sendiri pertama kali dipopulerkan oleh David Patterson, pengajar pada University of California di Berkely.

Definisi RISC

RISC, yang jika diterjemahkan berarti "Komputasi Kumpulan Instruksi yang Disederhanakan", merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor. Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC,R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine. Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan Ultra SPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.
Selain RISC, desain Central Processing Unit yang lain adalah CISC (Complex Instruction Set Computing), yang jika diterjemahkan ke dalam Bahasa Indonesia berarti Komputasi Kumpulan Instruksi yang kompleks atau rumit.

Karakteristik RISC


Arsitektur RISC memiliki beberapa karakteristik diantaranya :
·        Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC. Dengan menggunakan instruksi sederhana atau instruksi satu siklus hanya dibutuhkan satu mikrokode atau tidak sama sekali, instruksi mesin dapat dihardwired. Instruksi seperti itu akan dieksekusi lebih cepat dibanding yang sejenis pada yang lain karena tidak perlu mengakses penyimapanan kontrol mikroprogram saat eksekusi instruksi berlangsung.

·        Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control. Keuntungan lainnya memungkinkan optimasi pemakaian register sehingga operand yang sering diakses akan tetap ada di penyimpan berkecepatan tinggi. Penekanan pada operasi register ke register merupakan hal yang unik bagi perancangan RISC.

·        Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register,. Beberapa mode tambahan seperti pergeseran dan pe-relatif dapat dimasukkan selain itu banyak mode kompleks dapat disintesis pada perangkat lunak dibanding yang sederhana, selain dapat menyederhanakan sel instruksi dan unit kontrol.

·        Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word. Fitur ini memiliki beberapa kelebihan karena dengan menggunakan field yang tetap pendekodean opcode dan  pengaksesan operand register dapat dilakukan secara bersama-sama

Ciri-ciri RISC


·        Instruksi berukuran tunggal
·        Ukuran yang umum adalah 4 byte
·        Jumlah pengalamatan data sedikit, biasanya kurang dari 5 buah.
·        Tidak terdapat pengalamatan tak langsung yang mengharuskan melakukan sebuah akses memori agar memperoleh alamat operand lainnya dalam memori.
·        Tidak terdapat operasi yang menggabungkan operasi load/store dengan operasi aritmatika, seperti penambahan ke memori dan penambahan dari memori.
·        Tidak terdapat lebih dari satu operand beralamat memori per instruksi
·        Tidak mendukung perataan sembarang bagi data untuk operasi load/ store.
·        Jumlah maksimum pemakaian memori manajemen bagi suatu alamat data adalah sebuah instruksi .
·        Jumlah bit bagi integer register spesifier sama dengan 5 atau lebih, artinya sedikitnya 32 buah register integer dapat direferensikan sekaligus secara eksplisit.
·        Jumlah bit floating point register spesifier sama dengan 4 atau lebih, artinya sedikitnya 16 register floating point dapat direferensikan sekaligus secara eksplisit.

ARTIKEL KE 2 : PROSESOR PARALEL .
1.      JARINGAN INTERKONEKSI .
Komunikasi diantara terminal-terminal yang berbeda harus dapat dilakukan dengan suatu media tertentu. Interkoneksi yang efektif antara prosesor dan modul memori sangat penting dalam lingkungan komputer. Menggunakan arsitektur bertopologi bus bukan merupakan solusi yang praktis karena bus hanya sebuah pilihan yang baik ketika digunakan untuk menghubungkan komponen-komponen dengan jumlah yang sedikit. Jumlah komponen dalam sebuah modul IC bertambah seiring waktu. Oleh karena itu, topologi bus bukan topologi yang cocok untuk kebutuhan interkoneksi komponen-komponen di dalam modul IC. Selain itu juga tidak dapat diskalakan, diuji, dan kurang dapat disesuaikan, serta menghasilkan kinerja toleransi kesalahan yang kecil. Di sisi lain, sebuah crossbar yang ditunjukkan pada Gambar 2.2 menyediakan interkoneksi penuh diantara semua terminal dari suatu sistem tetapi dianggap sangat kompleks, mahal untuk membuatnya, dan sulit untuk dikendalikan. Untuk alasan ini jaringan interkoneksi merupakan solusi media komunikasi yang baik untuk sistem komputer dan telekomunikasi. Jaringan ini membatasi jalur-jalur diantara terminal komunikasi yang berbeda untuk mengurangi kerumitan dalam menyusun elemen switching Fungsi jaringan interkoneksi dalam sistem komputer dan telekomunikasi adalah untuk mengirimkan informasi dari terminal sumber ke terminal tujuan.

2.     Mesin SIMD .
Mesin SIMD (Single Instruction stream, Multiple Data stream)
Komputer yang mempunyai beberapa unit prosesor di bawah satu supervisi satu unit common control. Setiap prosesor menerima instruksi yang sama dari unit kontrol, tetapi beroperasi pada data yang berbeda.

3.     Mesin MIMD .
Mesin MIMD (Multiple Instruction stream, Multiple Data stream)
Organisasi komputer yang memiliki kemampuan untuk memproses beberapa program dalam waktu yang sama. Pada umumnya multiprosesor dan multikomputer termasuk dalam kategori ini.
MIMD dibagi menjadi 2 grup:
Ø  Multiprocessor yang menggunakan memory bersama.
Ø  Multicomputer.

4.     ARSITEKTUR PENGGANTI .
Dalam bidang teknik komputer, arsitektur pengganti merupakan konsep perencanaan atau struktur pengoperasian dasar dalam komputer atau bisa dikatakan rencana cetak biru dan deskripsi fungsional kebutuhan dari perangkat keras yang didesain. implementasi perencanaan dari masing-masing bagian seperti CPU, RAM, ROM, Memory Cache, dll.

SUMBER :




Tidak ada komentar:

Posting Komentar